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The maximum of E is obtained if all 0.~, are - 1 .  The 
minimum of E is obtained if all 0.k are + 1, which agrees with 
the result of Kabsch (1976). 

It has also been shown in Kabsch (1976) that S + L must 
be positive definite at the minimum of E. Hence, from (2) the 
determinants of the two matrices, U and R, must have the 
same signs. 

In the case that det(R) > 0, the orthogonal matrix U 
corresponding to the minimum of E will be a proper rotation. 
In the case that det(FI) < 0, an improper rotation will be 
obtained at the minimum of E (Nyburg & Yuen, 1977). 
From (9), the smallest residual E corresponding to a best 
true rotation is then obtained if 0.~ = 0"2 = + 1 and 0"3 = - 1  
assuming that/23 is the smallest eigenvalue of [~FI (three- 
dimensional vector space). Note that if the smallest eigen- 
value is degenerate a best rotation cannot be determined 
uniquely in the case det(FI) < 0. 

Finally, it might be worth mentioning that this procedure 
can be generalized to find a best unitary matrix to relate two 
sets of vectors in the complex finite-dimensional vector 
space. 

Summarizing the above results, the following procedure 

for obtaining a best proper rotation in a three-dimensional 
vector space is suggested. 

(a) Remove any translation between the two given vector 
sets x n, yn and determine E 0 = ½ ~,,wn(x 2 + y~) and R. 

(b) Form ~IFI, determine eigenvalues/2k and the mutually 
orthogonal eigenvectors a k and sort so that g~ >/22 >/23. Set 
a 3 = a I × a 2 to be sure to have a right-handed system. 

(c) Determine Fla k (k = 1, 2, 3), normalize the first two 
vectors to obtain b l, b 2 and set b 3 = b~ x b 2. This will also 
take care of the case/22 >/2a = 0. 

(d) Form U according to (7) to obtain the best rotation. 
Set 0" 3 = - 1  if b3.(Fla3) < 0, otherwise o 3 = + 1. The residual 
error is then E = E o - v//21 - X/'/22 - 0.3V//23 • 
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A simple test for the validity of the rigid-body model for molecular vibrations in crystals is proposed. 

Since bond-stretching vibrations for atoms other than 
hydrogen and deuterium are normally of much smaller 
amplitude than other vibrations (bond-bending, torsional, 
rigid-body translational and rotational oscillations), the 
mean-square vibrational amplitudes of a pair of bonded 
atoms should be equal along the bond direction, even though 
they may be widely different in other directions. As Hirshfeld 
(1976) has pointed out, this provides a necessary (although 
by no means sufficient) condition that thermal ellipsoids 
derived by X-ray analysis represent genuine vibrational 
ellipsoids. If the condition is seriously violated, the Uij values 
may be suspected of being contaminated by charge-density 
deformation contributions or absorption or other systematic 
errors. 

Hirshfeld's 'rigid-bond' postulate can be expressed in a 
more general (though somewhat weaker) form as a 'rigid- 
body' postulate and used as a simple test for the validity of 
the rigid-body model of any molecule for which Ut/values 
are available. Since rigidity implies that all distances within a 
body remain invariant, all pairs of atoms in a rigid molecule 
can be regarded as being connected by virtual bonds. Hence 
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the equality condition should hold for all such pairs of atoms 
as well as it does for bonded pairs. Conversely, when the 
data satisfy the rigid-bond test, gross violation of the equality 
condition for certain pairs of non-bonded atoms within a 
molecule should indicate that the rigid-body model is 
inappropriate for the molecule in question and might also 
provide some hints about the nature of the internal motions 
within the molecule. 

With these ideas in mind, we have calculated mean-square 
vibrational amplitudes z 2 in the AB direction for all pairs of 

A , B  

atoms in several molecules from Uij values obtained by 
conventional least-squares refinement. We find that the 
condition A A 8 z2 - z2 ~ 0 is obeyed well in cases , = A , B  B , A  

where least-squares analysis of the vibration tensors in terms 
of rigid-body T, L and S tensors (Schomaker & Trueblood, 
1968) leads to good agreement between U/j(obs.) and 
U/j(calc.) values. This is hardly surprising, since the 
condition AA, n = 0 is obeyed exactly for the rigid-body 
model. 

More interesting are examples where the rigid-body 
analysis leads to poor agreement between Uu(obs.) and 
Uu(calc.). We discuss here one illustrative example in detail, 
that of 3-phenyl-3-benzyl-N-methylsuccinimide (Fig. 1), the 
crystal structure of which has recently been determined (at 
100 K) in our laboratory. The z ~  values for the 21.20/2 
directions between all pairs of C, N and O atoms are 
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Table 1. Values of lA A.nl x 104 (A 2) for all atom pairs (bonded pairs are in parentheses) 

See Fig. 1 for atomic numbering. 

N C(l) C(2) C(3) C(4) C(5)C(6) C(7) C(8) C(9)C(10)C(11)C(12) 

7 (50) 8 16 33 17 
20 7 1 4 (22) 1 
0 (22) 39 6 (17) (2) 

0 (22) 42 3 3 
0 (21) 17 29 

0 (11) I0 
0 11 

0 

9 18 7 12 36 86 9 
26 117 108 122 115 36 43 
3 57 22 22 5 51 9 
1 11 40 45 87 154 88 

(12) 35 32 17 16 43 43 
16 35 35 51 7 48 41 
9 40 19 42 42 90 44 

35 124 120 156 149 161 167 

0 (6) 39 8 26 23 65 
0 (3) 2 19 1 (15) 

0 (7) 8 6 14 
Benzyl 0 (20) 19 4 

-benzyl 0 (49) 13 
0 (3) 

0 

Phenyl 
-benzyl 

C(13) C(14) C(15) C(16) C(17) C(18) 

67 19 31 46 36 28 
9 56 61 19 9 17 

13 72 65 47 31 47 
34 97 61 36 15 13 

(31) 64 8 12 9 9 
17 61 17 15 28 4 
13 72 66 17 18 1 
12 5 9 6 2 21 

0 53 15 7 42 30 
15 97 18 20 48 39 
39 26 47 34 10 7 
30 37 37 28 21 11 

1 76 8 19 66 57 
78 4 67 63 20 21 
82 23 55 68 48 53 

0 (2) 15 18 7 (12) 
0 (36) 7 9 1 

Phenyl 0 (0) 13 4 
-phenyl 0 (8) 13 

0 (8) 
0 

Benzyl 
-imide 

Phenyl 
-imide 

conveniently arranged as in Table 1. The r.m.s, value of  A for 
the 23 bonded pairs of  atoms (in parentheses in the table) is 
21 x 10 -4/~2, to be compared with an estimated a(A) ~ 15 x 
10 -4 A 2. The r.m.s. A's for non-bonded pairs within each of  
the three groupings, N-methylsuccinimide (eight atoms), 
benzyl (seven) and phenyl (six), are 19, 24 and 11 (all 
x 10 -4) A 2 respectively, no larger than for the bonded pairs. 
However,  the r.m.s. A's for non-bonded pairs between these 
three groupings are significantly larger: 71 x 10 -4 for imide-  
benzyl, 38 x 10 -4 for imide-phenyl ,  and 44 x 10 -4/~2 for 
benzyl-phenyl .  Even casual inspection of  Table 1 shows that 
low A values tend to be concentrated in three blocks 
bordering the main diagonal, with the large A values (all 
those greater than, say, 50 x 10 -4 A 2) in the off-diagonal 
blocks corresponding to inter-group pairings. 

This analysis of  the z 2 values indicates that non-bonded A,B 
distances within the individual groups are not significantly 
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Fig. 1. Atomic numbering for 3-phenyl-3-benzyl-N-methyl- 
succinimide. 

less rigid than the bonds themselves, in other words,  that  the 
groups behave as more or less rigid bodies, while there are 
considerable relative motions between them. However ,  it is 
not so easy to establish the nature of  these motions. One 
possibility is to postulate the existence of  certain specific 
kinds of motion (e.g. torsional oscillations about bonds) and 
estimate their magnitudes by including appropriate 
parameters  in a modified Schomaker -Trueb lood  type of 
analysis (Dunitz & White, 1973). 

Programs THMB-2 or THMI-2 (Trueblood, 1977, 1978) 
for analysis of  thermal-motion ellipsoids in crystals provide 
options for the automatic  calculation of  z 2 values and A,B 
torsional oscillations about bonds. 
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